If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-40=0
a = 1; b = 1; c = -40;
Δ = b2-4ac
Δ = 12-4·1·(-40)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*1}=\frac{-1-\sqrt{161}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*1}=\frac{-1+\sqrt{161}}{2} $
| 5k+35-8=12 | | 6f+4=52 | | 20−6x=2¨ | | 3(4x−1)=7(2x−7) | | 2x+4=3x-26 | | (2x+4)=(3x-26) | | 15−3x=3x+3 | | 6x+2=4x=7 | | 6x=10x-28 | | 1.2x^2-7x+300=0 | | 13x^2+21x-10=x | | x+x+2x+8x-60=360 | | 4.8-h=3.9 | | 3x^2+16x-27=0 | | -10(s+5)=131 | | 3x+3=(5x-10)+7 | | 2x-12=8-3 | | 3x+3=(5x-10+)7 | | 8=26−x | | a-3/2=a+6/3 | | 7,58=34x-8,83 | | 4a+1=2a+7 | | 15x-5,16=-2x+4,12 | | 3x^2-27x+20=0 | | 16x2+4x=0 | | 30=0.1x15 | | 15x–5,16=-2x+4,12 | | 4m+21=2m-7 | | 8.6=6.6x+2 | | 3x+13=-7x-37 | | 10x+20=9x−11 | | 4(2x+3)=5(3x-2 |